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Abstract. We show how to compute nonlinear optical absorption spectra of an Asymmetric Double Quan-
tum Well (ADQW) in the region of intersubband electronic transitions. The method uses the microscopic
calculation of the dephasing due to electron-electron and electron-phonon scattering rates and the macro-
scopic real density matrix approach to compute the electromagnetic fields and susceptibilities. The po-
larization dephasing and the corrections to the Rabi frequencies due to the electron-electron interaction
are also taken into account. For a proper choice of the QW widths and of the driving fields we obtain
electromagnetically induced transparency. This transparency has a very narrow linewidth when a single
driving field is applied resonant to the transition between the second and the third subband. In the case of
two resonant driving fields or of a driving field resonant between the first and third subband we obtain a
large transparency enhancement over the entire absorption spectrum. Results are given for GaAs/GaAlAs
QWs and experiments are proposed.

PACS. 78.67.De Quantum wells – 72.10.Di Scattering by phonons, magnons, and other nonlocalized
excitations – 42.65.-k Nonlinear optics

1 Introduction

Intersubband transitions in n-doped quantum well struc-
tures have attracted a great deal of attention in recent
years, both from the theoretical [1] and the experimental
point of view [2]. Nonlinear effects involving three sub-
bands have also been experimentally studied in symmetric
quantum wells [3]. Sadeghi et al. [4] have shown that in
the case of an asymmetric quantum well an electromag-
netically induced transparency (EIT) may be obtained
with appropriate driving fields, provided that the coher-
ence between the subbands considered is preserved for a
sufficiently long time [5–9].

The phenomenon of EIT has been deeply studied
in atomic physics [10], starting from its observation in
sodium vapours [11], where the hyperfine split s-states
transitions to 3p states are shown to interfere destructively
at resonance. It has been later found also in strontium
vapours, where the driving field coupling a metastable
empty state to the final state produces transparency in
the probe beam [12]. Many consequences of EIT have been
studied and experimentally verified [10]; particularly sig-
nificant are the enormous reductions of the group veloc-
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ity [13] and the expected novelties in the light propagation
in a medium [14] and in the Cerenkov light emission [15].

In what follows we study the nature of the EIT
phenomenon in the case of intersubband transitions in
an n-type Asymmetric Double Quantum Well (ADQW).
Nonlinear optical processes are considered, taking into
account the coherent amplitude interference of the tran-
sition probabilities in the electromagnetic fields. We show
that the EIT effect takes place for sufficiently intense driv-
ing fields under appropriate conditions, which depend on
the electron-electron and electron-phonon scattering. Our
approach is similar to that of of Sadeghi et al. [4], but
considers explicitly the k-dependence of all the scattering
processes, including the polarization dephasing and the
corrections to the Rabi frequencies described by Lindberg
and Koch [16]. We will distinguish two cases, one with a
control driving field and a probe field, and a second case
with two coherent driving fields which produce population
trapping, and a weak probe field. The second case is anal-
ogous to the one studied by Narducci et al. [17] in three
level atomic systems.

We make use of the density matrix approach [18–21],
and consider the dephasing rates due to electron-electron
and electron-phonon interaction. This enables us to study
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the effects of the coherence between the external electro-
magnetic fields and the motion of electrons in the conduc-
tion subbands, and to clarify the role of specific scattering
processes in the possibility to observe the EIT. With de-
tailed calculations on a specific example we prove that
EIT can be obtained with one driving field and a broad
transparency enhancement obtains with two driving fields.

The paper is organized as follows. In Section 2 we
adopt the Stahl density matrix approach to obtain the
constitutive equations for the case of three QW subbands.
The constitutive equations contain terms which describe
the scattering processes. In Section 3 we show how to eval-
uate all the relevant contributions to the dephasing rates
due to the electron-electron and electron-phonon scatter-
ing, and thus obtain a closed system of equations for the
time-dependent density matrix elements. In Section 4 we
present the constitutive equations in Fourier space and de-
scribe their properties. In Section 5 we give the absorption
spectrum and the results for a specific case of ADQWs in
the GaAs/GaAlAs system, such that electrons in the ex-
cited subbands have appropriate lifetimes to observe EIT.
In Section 6 we present our conclusions and discuss exper-
imental consequences.

2 Constitutive equations

We consider the conduction band of an asymmetric double
quantum well with three subbands corresponding to the
energies ~ω1, ~ω2 and ~ω3. They are represented in real
space as an ensemble of three levels localized at the atomic
sites of the two-dimensional Quantum Well, in accordance
with Stahl’s model [18]. The density matrix of the system
can be described in terms of the operators

Ĉnmij = ĉn†i ĉ
m
j , (1)

where ĉn†i denotes the creation operator for electrons at
the site i in the subband n, and ĉmj is the annihilation
operator for the electrons at the site j in the subband m.
We start by considering a simple Hamiltonian in which
the electrons occupy their states as independent particles

H = HTL +HM +HEM, (2)

where

HTL = ~ω1

∑
i

Ĉ11
ii + ~ω2

∑
i

Ĉ22
ii + ~ω3

∑
i

Ĉ33
ii , (3)

is the Hamiltonian of the three levels system at a given po-
sition, HM describes the possibility of motion of electrons
from one site to another, which in the effective mass ap-
proximation corresponds to the kinetic energy terms,HEM

denotes the interaction with the external electromagnetic
field, which in the Λ configuration indicated in Figure 1 is

HEM =−
∑
ij

E1
ij

(
M31

ij Ĉ
31
ij + M13

ji Ĉ
13
ji

)
−
∑
ij

E2
ij

(
M32

ij Ĉ
32
ij + M23

ji Ĉ
23
ji

)
, (4)

Fig. 1. Schematic diagram of the energy potentials and of the
intersubband transitions in an Asymmetric Double Quantum
Well. The continuous lines indicate intense control beams and
the dotted line indicates the probe beam.

where Mnm
ij represents the dipole element for the tran-

sition between electrons located at sites i and j in the
subbands n and m, En

ij are the electric fields of the elec-
tromagnetic waves resonant with the transitions n → 3
taken at a mean point between sites i and j

E = E1
ij +E2

ij = 1
2 Ẽ

1
(ρi+ρj

2

)
e−iΩ1t

+ 1
2 Ẽ

2
(ρi+ρj

2

)
e−iΩ2t + c.c. (5)

We observe that in the Hamiltonian (2) the Coulomb
interaction among the electrons is neglected. In the
Hartree-Fock approximation this interaction would intro-
duce a correction in the energy levels and in the intensity
of the interaction with the electromagnetic field, as shown
by Haug and Koch [22]. The intrasubband contributions
have been shown explicitly by Huang et al. [23] to influ-
ence the position and dispersion of the subbands. Since
our problem is not to obtain the best calculation of the
electronic states, and the effect of the non parabolicity of
the subbands is irrelevant at low electron densities, we feel
justified in neglecting the above intrasubband corrections.
We will instead consider in Section 4 the correction to the
transition probabilities which produces generalized Rabi
frequencies. The irreversible dephasing contributions pro-
duced by the Coulomb interaction beyond the Hartree-
Fock approximation will be explicitly described and in-
cluded in Sections 3 and 4, where also the effects of the
electron-phonon interaction will be considered.

The equations of motion for the operators Ĉnmij can be
obtained from the Heisenberg equation with an incoherent
relaxation contribution as

∂Ĉnmij
∂t

=
i
~

[H, Ĉnmij ] +
∂Ĉnmij
∂t

∣∣∣∣∣
incoh

. (6)

The last term of equation (6) includes all those contri-
butions due to the radiation field, the electron-electron
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scattering and the phonon-electron interaction which af-
fect the Ĉnmij matrix elements in an irreversible way and
produce dephasing.

We compute the commutator in the above equation
using the anticommutation rules for fermions

{
ĉn†i , ĉ

m
j

}
= δnmij ,{

ĉn†i , ĉ
m†
j

}
=
{
ĉni , ĉ

m
j

}
= 0, (7)

from which we obtain

[
Ĉnmij , Ĉstkl

]
= δmsjk Ĉ

nt
il − δntil Ĉsmkj . (8)

The z-dependent envelope functions Fn(z) and the cor-
responding eigenvalues ~ωn are obtained from the one-
dimensional Schrödinger equation along the growth direc-
tion

[
−~

2

2
d
dz

1
mez

d
dz

+ Vconf(z)
]
Fn(z) = ~ωnFn(z), (9)

where the mass mez is different for the well and the bar-
rier, and the confining potential profile Vconf(z) is indi-
cated in Figure 1. In the following we only consider the z-
components of the electric field and of the dipole moment,
since it is the only component which allows intersubband
transitions [24]. Next we use for the operators ĉni and ĉn†i
the continuous representations ĉn(ρ) and ĉn†(ρ) in the
QW planes and substitute in equation (6) the operators
by their mean values, so that, using the notation

Cnm12 ≡ Cnm(ρ1,ρ2) =
〈
ĉn†(ρ1)ĉm(ρ2)

〉
,

Cnmjρ ≡ Cnm(ρj ,ρ) =
〈
ĉn†(ρj)ĉ

m(ρ)
〉
,

Mnm
jρ = Mnm

0 δ(ρj − ρ),

Mnm
0 = e

∫
F ∗n(z)zFm(z)dz,

E1
jρ = E1

(
ρj + ρ

2

)
,

E2
jρ = E2

(
ρj + ρ

2

)
, (10)

where j = 1, 2, we obtain the following equations of mo-
tion for the matrices Cnm12

∂C11
12

∂t
+

i
~
H0

12C
11
12 = − i

~

[∫
M31

1ρE
1
1ρC

31
ρ2d

2ρ

−
∫
M13

2ρE
1
2ρC

13
1ρd

2ρ

]
+
(

dC11
12

dt

)
incoh

, (11)

∂C22
12

∂t
+

i
~
H0

12C
22
12 = − i

~

[∫
M32

1ρE
2
1ρC

32
ρ2d

2ρ

−
∫
M23

2ρE
2
2ρC

23
1ρd

2ρ

]
+
(

dC22
12

dt

)
incoh

, (12)

∂C33
12

∂t
+

i
~
H0

12C
33
12 = − i

~

[
−
∫
M31

2ρE
1
2ρC

31
1ρd

2ρ

+
∫
M13

1ρE
1
1ρC

13
ρ2d

2ρ−
∫
M32

2ρE
2
2ρC

32
1ρd

2ρ

+
∫
M23

1ρE
2
1ρC

23
ρ2d

2ρ

]
+
(

dC33
12

dt

)
incoh

, (13)

∂C13
12

∂t
+

i
~
H0

12C
13
12 − i(ω1 − ω3)C13

12 =

− i
~

[
−
∫
M31

1ρE
1
1ρC

11
ρ2d

2ρ+
∫
M31

2ρE
1
2ρC

33
1ρd

2ρ

−
∫
M32

2ρE
2
2ρC

12
1ρd

2ρ

]
+
(

dC31
12

dt

)
incoh

(14)

∂C23
12

∂t
+

i
~
H0

12C
23
12 − i(ω2 − ω3)C23

12 =

− i
~

[
−
∫
M32

1ρE
2
1ρC

22
ρ2d

2ρ+
∫
M32

2ρE
2
2ρC

33
1ρd

2ρ

−
∫
M31

1ρE
1
1ρC

21
ρ2d

2ρ

]
+
(

dC32
12

dt

)
incoh

, (15)

∂C12
12

∂t
+

i
~
H0

12C
12
12 − i(ω1 − ω2)C12

12 =

− i
~

[
−
∫
M23

1ρE
2
1ρC

13
ρ2d

2ρ+
∫
M31

2ρE
1
2ρC

32
1ρd

2ρ

]
+
(

dC21
12

dt

)
incoh

, (16)

where the term H0 is derived from the mobility term
HM [18] and gives

H0
12 =

~2

2me‖

(
∇2
ρ1
−∇2

ρ2

)
, (17)

assuming a parabolic band shape with an isotropic effec-
tive electron mass me‖ = m∗e. Analogous equations hold
for the hermitian conjugate operators C31

21 , C
32
21 , C

21
21 . In

comparing the above expressions with the usual density
matrix equations for three-level atoms, we observe that
the difference originates from the fact that in our case
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the matrix elements are space dependent, and so are all
processes involved. As discussed above, consistently with
the approximate Hamiltonian (2), the above coupled equa-
tions at this stage do not include energy renormalization
effects and the corrections on the Rabi terms discussed by
Haug and Koch [22].

The next step is to solve the constitutive equa-
tions (11–16), with the electric field in the form (5). The
transition density matrix elements C13, C12, C23 and their
hermitian conjugates can be expressed in the form

C11
12 = C̃11

12 , C22
12 = C̃22

12 , C33
12 = C̃33

12

C13
12 = C̃13

12 e−iΩ1t, C31
12 = C̃31

12e+iΩ1t,

C23
12 = C̃23

12 e−iΩ2t, C32
12 = C̃32

12e+iΩ2t,

C12
12 = C̃12

12 e−i(Ω1−Ω2)t,

C21
12 = C̃21

12 e+i(Ω1−Ω2)t, (18)

where the fast time dependence with the frequencies of
the e.m. fields is separated out. Introducing the above
expressions into the r.h.s. of the equations (11–16) and
integrating in d2ρ we obtain the following equations for
the slowly varying parts and for the diagonal population
terms

∂C̃11
12

∂t
+ iH0

12C̃
11
12 =− i

2~

[
M31

0 Ẽ1
11C̃

31
12 −M13

0 Ẽ1∗
22 C̃

13
12

]
+

(
dC̃11

12

dt

)
incoh

, (19)

∂C̃22
12

∂t
+ iH0

12C̃
22
12 =− i

2~

[
M32

0 Ẽ2
11C̃

32
12 −M23

0 Ẽ2∗
22 C̃

23
12

]
+

(
dC̃22

12

dt

)
incoh

, (20)

∂C̃33
12

∂t
+ iH0

12C̃
33
12 =− i

2~

[
−M31

0 Ẽ1
22C̃

31
12 +M13

0 Ẽ1∗
11 C̃

13
12

−M32
0 Ẽ2

22C̃
32
12 +M23

0 Ẽ2∗
11 C̃

23
12

]
+

(
dC̃33

12

dt

)
incoh

, (21)

∂C̃13
12

∂t
+ iH0

12C̃
13
12 − i(Ω1 − ω31)C̃13

12 =

− i
2~

[
−M31

0 Ẽ1
11C

11
12 +M31

0 Ẽ1
22C

33
12

−M32
0 Ẽ2

22C̃
12
12

]
+

(
dC̃31

12

dt

)
incoh

,

(22)

∂C̃23
12

∂t
+ iH0

12C̃
23
12 − i(Ω2 − ω32)C̃23

12 =

− i
2~

[
−M32

0 Ẽ2
11C

22
12 +M32

0 Ẽ2
22C

33
12

−M31
0 Ẽ1

11C̃
21
12

]
+

(
dC̃32

12

dt

)
incoh

,

(23)

∂C̃12
12

∂t
+ iH0

12C̃
12
12 − i(Ω1 −Ω2 − ω21)C̃12

12 =

− i
2~

[
−M23

0 Ẽ2∗
11 C̃

13
12 +M31

0 Ẽ1
22C̃

32
12

]
+

(
dC̃21

12

dt

)
incoh

, (24)

where ωij = ωi − ωj .
Now we make the approximation that the wavelength

of the electromagnetic wave is much greater than the lat-
eral extension of the considered QW, which is certainly
valid for the infrared region of the spectrum. Thus the
field can be considered as uniform, and the electron den-
sity matrix elements will depend on the relative coordinate
only, and can be expressed in the two dimensional space as

C̃ij12 =
∑
k

c̃ijk e−ik(ρ1−ρ2). (25)

Our objective is to solve the equations for the Fourier com-
ponents c̃ijk , which have a slow time dependence, in the two
dimensional momentum space; this requires putting ex-
pansion (25) into the constitutive equations (19–24) and
solving them for all the values of the vector k. The coef-
ficients c̃ijk can also be defined from the electron creation
(destruction) operators in k space ĉi†k (ĉik). They are the
slowly varying parts of their mean values

cijk =
〈
ĉi†k ĉ

j
k

〉
· (26)

so that

c11
k = c̃11

k , c22
k = c̃22

k , c33
k = c̃3k,

c13
k = c̃13

k e−iΩ1t, c31
k = c̃31

k e+iΩ1t,

c23
k = c̃23

k e−iΩ2t, c32
k = c̃32

k e+iΩ2t,

c12
k = c̃12

k e−i(Ω1−Ω2)t,

c21
k = c̃21

k e+i(Ω1−Ω2)t. (27)

A crucial point is to compute the incoherent contributions,
which are typical of the quantum well system and are cru-
cial for the possibility of obtaining EIT, as discussed by
Sadeghi et al. [5].

3 The dephasing terms

We now consider the incoherent irreversible terms on the
r.h.s. of the equations (19–24). They are essentially due to
the electron-electron and electron-phonon scattering, be-
cause the spontaneous radiative emission, which is domi-
nant in the atomic case, gives here a negligible contribu-
tion.
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3.1 Electron-electron scattering

We consider the main electron-electron scattering contri-
butions to the incoherent terms produced by the addi-
tional interaction Hamiltonian term which conserves the
number of electrons in each subband [16]

He−e =
1
2

∑
i,j,k,k′,q6=0

V e−eij (q)ĉi†k+qĉ
j†
k′−qĉ

j
k′ ĉ

i
k . (28)

The additional contributions which scatter electrons
between different subbands are negligible. We note that
the inclusion of the Hamiltonian term (28), introduces
into the equations of motion four-operator terms. In the
Hartree-Fock approximation these terms can be written
as the product of appropriate averages of two-operator
terms, leading to the already discussed corrections to the
subband dispersion and to the Rabi frequencies. All the
higher order correlations can be systematically included
to the desired order in the Coulomb potentials V e−eij by
the use of the projection operator technique [16]; this pro-
cedure allows to separate the equations of motion into two
parts, the coherent Hartree-Fock terms and incoherent or
collisional ones. This section will be concerned with the
incoherent contributions in the rate equations.

The estimation of the population change in each sub-
band leads to the well-known semiclassical Boltzmann ex-
pression [22]

(
∂ciik
∂t

)e−e
incoh

= Γ in,e
i (k)(1− ciik )− Γ out,e

i (k)ciik , (29)

and the polarization dephasing rates can be written as [22](
∂cijk
∂t

)e−e
incoh

=− 1
2

[
Γ in,e
i (k)Γ out,e

i (k)

+Γ in,e
j (k) + Γ out,e

j (k)
]
cijk

+
∑
q 6=0

Λij(k,q)cijk+q i 6= j, (30)

expressed in terms of the probability rates for the electrons
to be scattered in or out of a state k of subband i

Γ in,e
i (k) =

2π
~

2
∑
j,q,k′

ciik−q(1− cjjk′−q)cjjk′ |V
e−e
ij (q)|2δ

×
[
Ecj (k

′−q)−Ecj(k′)−Eci (k−q)+Eci (k)
]
,

(31)

Γ out,e
i (k) =

2π
~

2
∑
j,q,k′

(1− ciik−q)cjjk′−q(1− cjjk′)

× |V e−eij (q)|2δ
[
Ecj (k

′ − q)

−Ecj (k′)−Eci (k− q) +Eci (k)
]
, (32)

and of the polarization transfer contributions of Lindberg
and Koch [16]

Λij(k,q) =∑
k′ 6=0,n=i,j

2π
~

2
[
cnnk (1−cnnk′ )cnnk′+q+(1−cnnk )cnnk′ (1−cnnk′+q)

]
×|V e−enn (q)|2δ [Ecn(k′ + q) +Ecn(k)−Ecn(k′)−Ecn(k + q)]

+
∑

k′ 6=0,(n,m)={(i,j),(j,i)}

2π
~

2
[
cnnk (1− cmmk′ )cmmk′−q

+(1− cnnk )cmmk′ (1− cmmk′−q)
]
|V e−enm (q)|2δ [Ecn(k)

+Ecm(k′ − q)−Ecn(k + q)−Ecm(k′)] , (33)

where all vectors are two-dimensional and the factor 2
accounts for the sum over spins. The term V e−eij denotes
the screened static electron-electron interaction potential,
which in two dimensions takes the form

V e−eij (q) =
2πe2

Sq

Fij(q)
εij(q)

, (34)

S being the QW surface, Fij(q) the form factor which
takes into account confinement in the z-direction

Fij(q) =
∫

dz
∫

dz1 |Fi(z)|2 |Fj(z1)|2 e−q|z−z1|, (35)

and εij(q) being the static dielectric functions, which we
obtained in the long wavelength limit by solving an appro-
priate set of equations given by Lee and Galbraith [25].

We can evaluate the summations in equations (31, 32)
by transforming them into integrations and obtain

Γ out,e
i (k) =

∑
j

2
(
S

4π2

)2 4π
~

∫ ∞
0

dq
∫ 2π

0

dθq
∫ ∞
|k cos θq|

dk′

× cjjk′−q(1− ciik−q)(1− cjjk′)|V
e−e
ij (q)|2

× m∗e
~2
√

1− (k/k′)2 cos2 θq
· (36)

A similar calculation can be performed to obtain Γ in,e
i (k)

from expression (31) and both dephasing rates can be com-
puted by numerical integration.

To evaluate the last term of equation (30) we find it
convenient to transform it as

∑
q 6=0

Λij(k,q)cijk+q =
∑
n=i,j

Λout
ij,n(k)cnnk + Λin

ij,n(k) (1− cnnk ) ,

(37)
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with

Λin
ij,n(k) =

∑
k′ 6=0,q 6=0

2π
~

2
[
cijk+qc

nn
k′ (1− cnnk′+q)

]
× |V e−enn (q)|2δ [Ecn(k′ + q) +Ecn(k)

−Ecn(k′)−Ecn(k + q)]

+
∑

k′ 6=0,q 6=0,m={i,j}6=n

2π
~

× 2
[
cijk+qc

mm
k′ (1− cmmk′−q)

]
× |V e−enm (q)|2δ [Ecn(k) +Ecm(k′ − q)

−Ecn(k + q)−Ecm(k′)] . (38)

Λout
ij,n(k) =

∑
k′ 6=0,q 6=0

2π
~

2
[
cijk+q(1− cnnk′ )cnnk′+q

]
× |V e−enn (q)|2δ [Ecn(k′ + q) +Ecn(k)

−Ecn(k′)−Ecn(k + q)]

+
∑

k′ 6=0,q 6=0,m={i,j}6=n

2π
~

× 2
[
cijk+q(1− cmmk′ )cmmk′−q

]
× |V e−enm (q)|2δ [Ecn(k) +Ecm(k′ − q)

−Ecn(k + q)−Ecm(k′)] . (39)

Expressions (38) and (39) can be numerically computed
by the same approach described above for Γ in,e

i (k) and
Γ out,e
i (k).

3.2 Electron-phonon scattering

To estimate the incoherent part of the constitutive equa-
tions we must also consider the electron-phonon effects,
which produce intersubband and intrasubband scattering.
Since we intend to consider QW in III-V compounds, we
take into account only LO phonons (frequency ωLO) be-
cause their coupling constants are much larger than those
of acoustic phonons. In fact, writing the phonon-electron
Hamiltonian in terms of the phonon creation (destruction)
operators b̂†q (b̂q)

He−p =
∑
q

[
α(q)e−iq·rb̂†q + c.c.

]
, (40)

we have for the two cases, as shown by Ferreira and
Bastard [26],

|αLO(q)|2 = 2π~ωLO
e2

ε∗Vq2
,

|αac(q)|2 =
C0

V ~csq, (41)

where V is the volume, cs the sound velocity in the crystal,
C0 a constant depending on the density of the material
and ε∗ is expressed in terms of the dielectric function at
high frequency ε∞ and static εs as

1
ε∗

=
1
ε∞
− 1
εs
· (42)

This gives for the densities of interest a relation between
orders of magnitude which can be computed at the Fermi
level as

|αLO(qF )|2
|αac(qF )|2 ≈ 107. (43)

For convenience we perform a low temperature calcu-
lation, since in the case of nanostructures the tempera-
ture can be fixed at will. Consequently, we consider only
the possibility of phonon emission with electrons decaying
from higher subbands into the lower subbands and within
the same band. The transition probabilities from band i to
band j for an electron with initial wave vector k, the ini-
tial state being taken occupied and the final state empty,
are

Γ pij(k) =
2π
~

2
∑
q

(Np + 1)

× |V e−op
ij (q)|2δ

[
Ecj (k + q) + ~ωLO −Eci (k)

]
, (44)

where the phonon distribution is

Np =
[
exp

(
~ωLO

kT

)
− 1
]−1

, (45)

and |V e−op
ij (q)|2 is the 2D interaction potential, given ex-

plicitly by

|V e−op
ij (q)|2 =

πe2~ωLO

2Sε∗
Iij(q)
q

, (46)

where

Iij(q) =
∫

dz
∫

dz1Fi(z)F ∗j (z1)e−q|z−z1|F ∗i (z1)Fj(z),

(47)

q =
√
k2 + k′2 − 2kk′ cos θ, (48)

and

k′ =

√
k2 +

2m∗e(~ωij − ~ωLO)
~2

, (49)
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as required by the conservation laws.
To evaluate summation (44) we proceed as for the

electron-electron scattering, obtaining a one dimensional
integral, of the same type as given in reference [26],

Γ pij(k) =
e2ωLOm

∗
e

2~2ε∗
(Np + 1)

∫ 2π

0

Iij(q)
q

dθ. (50)

This procedure eliminates the angular dependence of k,
so that from now on we only consider the moduli k.

As a consequence we can express the total population
change rate in a subband i at a given wave vector k as(

∂ciik
∂t

)e−p

incoh

= −
∑
j≤i

Γ out,p
ij (k)ciik +

∑
j≥i

Γ out,p
ji (k′′ji)c

jj
k′′ji
,

(51)

where Γ out,p
ij (k) is the probability that an electron is scat-

tered by a phonon out of state k from band i to band j

Γ out,p
ij (k) = Γ pij(k)

(
1− cjjk′

)
, (52)

k′ is given by expression (49), and

k′′ij =

√
k2 − 2m∗e(~ωij − ~ωLO)

~2
· (53)

Electron-phonon scattering also affects the polarization
terms which can be written as

(
∂cijk
∂t

)e−p

incoh

= −1
2

∑
n≤i

Γ out,p
in (k) +

∑
n≤j

Γ out,p
jn (k)

 cijk ,
for i 6= j. (54)

With the above procedure we can compute, with simple
numerical integration, all the relevant contributions due
to phonons to the dephasing, which appear in the popu-
lations and in the transition rates. They can be formally
expressed in terms of a single k vector through the single
parameter Γ out,p

ij , as shown in expressions (49–54).

4 Constitutive equations and their solutions

To obtain the equations for the Fourier transforms c̃ijk de-
fined in (25), we use the appropriate expressions for the
irreversible dephasing terms, neglecting eventual broaden-
ing contributions due to fluctuations of the QW widths.
We also include the corrections on the Rabi frequen-
cies produced by the intersubband scattering due to
He−e (28); they are obtained in the Hartree–Fock ap-
proximation by writing Heisenberg equations and replac-
ing the four-operators terms with appropriate products of
the two-operators coefficients c̃ijk as showed by Haug and
Koch [22]. The final expressions for the slowly varying

parts read as follows

∂c̃11
k

∂t
= −i(α′k c̃31

k − α′
∗
k c̃

13
k ) + i(γ′∗k c̃

12
k − γ′kc̃21

k )

+ Γ in,e
1 (k)

(
1− c̃11

k

)
−
[
Γ out,e

1 (k) + Γ out,p
11 (k)

]
c̃11
k

+ Γ out,p
21 (k′′21)c̃22

k′′21
+ Γ out,p

11 (k′′11)c̃11
k′′11
,

∂c̃22
k

∂t
= −i

(
β′kc̃

32
k − β′

∗
k c̃

23
k

)
+ i
(
γ′k c̃

21
k − γ′

∗
k c̃

12
k

)
+ Γ in,e

2 (k)
(
1− c̃22

k

)
−
[
Γ out,e

2 (k) + Γ out,p
22 (k)

+Γ out,p
21 (k)

]
c̃22
k +Γ out,p

22 (k′′22)c̃22
k′′22

+Γ out,p
32 (k′′32)c̃33

k′′32
,

∂c̃33
k

∂t
= i
(
α′k c̃

31
k − α′

∗
k c̃

13
k + β′k c̃

32
k − β′

∗
k c̃

23
k

)
+ Γ in,e

3 (k)
(
1− c̃33

k

)
+ Γ out,p

33 (k′′33)c̃33
k′′33

−
[
Γ out,e

3 (k) + Γ out,p
33 (k) + Γ out,p

32 (k)
]
c̃33
k ,

∂c̃13
k

∂t
− i
{
∆+ i [Γ e

1 (k) + Γ p
1 (k) + Γ e

3 (k) + Γ p
3 (k)]

}
c̃13
k =∑

n={1,3}

[
Λout

13,n(k)c̃nnk + Λin
13,n(k)(1− c̃nnk )

]
+ iα′k

(
c̃33
k − c̃11

k

)
− iβ′k c̃

12
k − iγ′k c̃

23
k ,

∂c̃23
k

∂t
− i
{

[∆′ + i [Γ e
2 (k)+Γ p

2 (k)+Γ e
3 (k)+Γ p

3 (k)]
}
c̃23
k =∑

n={2,3}

[
Λout

23,n(k)c̃nnk + Λin
23,n(k)(1− c̃nnk )

]
+ iβ′k

(
c̃33
k − c̃22

k

)
− iα′kc̃21

k − iγ′∗k c̃
13
k ,

∂c̃12
k

∂t
−i
{
∆−∆′+i [Γ e

1 (k)+Γ p
1 (k)+Γ e

2 (k)+Γ p
2 (k)]

}
c̃12
k =∑

n={1,2}

[
Λout

12,n(k)c̃nnk + Λin
12,n(k)(1− c̃nnk )

]
− i
(
α′kc̃

32
k − β′

∗
k c̃

13
k

)
+ iγ′k

(
c̃11
k − c̃22

k

)
, (55)

where

α′k = α+
1
2~
∑
q 6=0

V13(q)c̃13
k+q, α =

M31
0 Ẽ1

2~
,

β′k = β +
1
2~
∑
q 6=0

V23(q)c̃23
k+q, β =

M32
0 Ẽ2

2~
,

γ′k =
1
2~
∑
q 6=0

V12(q)c̃12
k+q

∆ = Ω1 − (ω3 − ω1) = Ω1 − ω31,

∆′ = Ω2 − (ω3 − ω2) = Ω2 − ω32,

Γ e
1 (k) =

1
2

[
Γ in,e

1 (k) + Γ out,e
1 (k)

]
,
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Γ p
1 (k) =

1
2
[
Γ out,p

11 (k)
]
,

Γ e
2 (k) =

1
2

[
Γ in,e

2 (k) + Γ out,e
2 (k)

]
,

Γ p
2 (k) =

1
2
[
Γ out,p

22 (k) + Γ out,p
21 (k)

]
,

Γ e
3 (k) =

1
2

[
Γ in,e

3 (k) + Γ out,e
3 (k)

]
,

Γ p
3 (k) =

1
2
[
Γ out,p

33 (k)+Γ out,p
31 (k)+Γ out,p

32 (k)
]
. (56)

In order to find the equilibrium electron densities c̃iik and
coherent transition amplitudes c̃ijk (i 6= j) we have to
solve the system of equations (55) in the stationary case

(∂c̃
ij
k

∂t = 0) for all k values. We observe that the unknown
densities c̃ijk enter the scattering rates Γ (k) and Λ(k), and
this produces a mixing between different k values. We no-
tice that conservation of the number of electrons is auto-
matically included for the phonon scattering, but for the
electron-electron scattering the number is conserved only
by the self-consistency requirement.

Our approach is conceptually similar to that of Sadeghi
et al. [4], but it differs from it in the fact that we compute
explicitly all the dephasing contributions and no experi-
mental parameters are required. All the eventual size fluc-
tuation broadenings can be reduced improving the quality
of the sample, and we consider them to be negligible. In
our procedure the electron-electron and electron-phonon
scattering produce admixture of different k values in the
different bands, so that the number of coupled equations
is correspondingly increased.

To obtain analytic self-consistent solutions of the non-
linear set of equation (55) is a formidable task. We search
for numerical solutions using the following iteration pro-
cedure. We first calculate the scattering parameters Γ (k)
and Λ(k), appearing in the equations, in the absence of
electromagnetic fields using the Fermi electron distribu-
tion law. The values so obtained are inserted into equa-
tions (55), obtaining a linearized system which involves all
k values. In the next step we eliminate the mixing between
different k values by computing also the terms c̃iik′′ with the
electron Fermi distribution; consequently we only have to
solve a 9×9 linear system for each value of k. The solutions
so obtained are again used for calculating the dephasing
and c̃iik′′ terms, which are then inserted into (55) to give
new solutions. The process is repeated with the appropri-
ate normalization at every step, until self consistency is
achieved for the stationary states. In the calculations we
performed, self consistency was rapidly obtained in the
case of only one control beam resonant with the 2 → 3
transition, while about 10 iterations were required in the
configurations with two driving fields of frequencies ω31

and ω32 or with a single driving field of frequency ω31, be-
cause of the appreciable population changes in the latter
cases.

5 Absorption spectrum and numerical results
for a specific system

We assume that the pump field (5) creates a stationary
state of the system, and consider the absorption spectrum
of an additional weak probe field

E(t) =
1
2

[E(t) + E∗(t)] , (57)

with

E(t) = E0 e−iωpt, (58)

at a positive probe frequency ωp, close to the transition
frequency ω31. The absorption coefficient is proportional
to the imaginary part of the linear susceptibility. We ex-
press the perturbation Hamiltonian in terms of the dipole
matrix elements and of the electron creation and annihi-
lation operators [1]

H ′ = −
∑
k

[
M31

0 E(t)ĉ3†k ĉ1k +M13
0 E∗(t) ĉ1†k ĉ3k

]
= −

∑
k

[
p̂+
k (t)E(t) + p̂−k (t)E∗(t)

]
, (59)

where

p̂+
k = M31

0 ĉ3†k ĉ1k,

p̂−k = M13
0 ĉ1†k ĉ3k, (60)

are the positive and negative frequency components of the
system polarization operators at a specific k.

The derivation of the expression for the imaginary part
of the susceptibility, which gives the absorption, is pre-
sented in Appendix A. It is given by the Laplace transform
of the correlation function

Im [χ(ωp)] =
1
~
∑
k

c11
k Re {L[Gk(τ, t′); s = iωp]} , (61)

with

L[Gk(τ, t′); s] =
∫ ∞

0

Gk(τ, t′)e−sτdτ, (62)

where the correlation function is defined as

Gk(τ, t′) =
〈[
p̂−k (t′), p̂+

k (t′ + τ)
]〉
· (63)

With the use of the quantum regression theorem [30] it
is finally possible to evaluate the susceptibility as defined
above in terms of the steady state solutions of the equa-
tions (55). With the procedure of the Appendix A we ob-
tain the absorption contribution in the form

Im[χ(ωp)] =−
∣∣M13

0

∣∣2
~

∑
k

c̃11
k Re

{
c̃13
k

(
R31,11

k,k (z)

−R31,33
k,k (z)

)
+
(
c̃33
k − c̃11

k

)
R31,31

k,k (z)

+ c̃23
k R

31,21
k,k (z)− c̃12

k R
31,32
k,k (z)

}
, (64)
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Table 1. Parameter values for GaAs/Ga1−xAlxAs Asymmet-
ric Double Quantum Wells from Figure 1. Energies ~ωn are
referred to the bottom of the well conduction band.

Quantity Value Quantity Value

m∗e 0.0665 m0 ~ωLO 36.4 meV

εs 12.35 ε∞ 10.92

ne 5× 1010 cm−2 T 6 K

EF 3.6 meV kF 0.08 nm−1

L1 1.8 nm L2 5.6 nm

d 3 nm ~ω1 68.5 meV

~ω2 191.0 meV ~ω3 263.3 meV

where z = i(ωp − Ω1) and the tensor elements Rij,lmk,k (z)
are obtained from the equations (55) written in the matrix
form

∂c̃ijk
∂t

=
∑
lm,k′

Aij,lmk,k′ c̃
lm
k′ +Kij

k , (65)

with lm and ij assuming the set of values 11, 22, 33,
12, 13, 23, 31, 21, 32, as

Rij,lmk,k′ (z) =
(
zI−Aij,lmk,k′

)−1

, (66)

I denoting the identity matrix.
With the self consistent solutions of equations (55) we

then obtain the populations of the three bands in the pres-
ence of one or two driving fields and, using equation (64),
we compute the absorption coefficient of the probe beam
at the frequency ωp.

We have performed the above calculations for the
structure illustrated in Figure 1 considering an Asymmet-
ric Double Quantum Well of n type GaAs/Al0.3Ga0.7As
of thicknesses reported in Table 1, where all the material
parameters are also given. We consider a low temperature
condition (T = 6 K) and low impurity doping (electron
density ne = 5×1010 cm−2), so that only the lowest band
is populated with the Fermi energy given in Table 1.

We first consider the case of a single control beam of
frequency Ω2 = ω32. The population of the bands is not
modified by the control beam, because the two highest
bands are not populated, but an eventual EIT must de-
pend on the intensity of the control beam.

We give in Figure 2 the dephasing due to the electron-
electron scattering in the three subbands. In this case the
result is not modified by the control beam, since it does not
change the populations. We observe that also in the higher
subbands we obtain a dephasing due to intersubband in-
teractions. As a consequence each subband contributes a
broadening with an average value of about 0.5 ps−1 and
a k dependence shown in the figure.

In Figure 3 we give the dephasing rates due to the
electron-phonon scattering. We notice that for the states
below the Fermi level the dephasing is such as to give a
longer lifetime for the subband 2 with respect to that of
subband 3.
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Fig. 2. Case of a single control beam (Ω2 ≈ ω32, α = 0).
Dephasing Γ e

i (k) due to the electron-electron scattering in the
three subbands as a function of k. Solid line refers to the lowest
subband. The dotted and the dashed lines refer to bands 3
and 2 respectively.
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Fig. 3. Case of a single control beam (Ω2 ≈ ω32, α = 0).
Electron-phonon scattering rates Γ p

i (k). The dotted and the
dashed lines refer to bands 3 and 2 respectively; the continu-
ous line to band 1. A large increase in the broadening occurs
when ~

2k2/2m∗e is above ~ωLO for bands 2 and 3, and above
~ωLO + EF for band 1, due to intrasubband electron-phonon
scattering.

In Figure 4 we give the total dephasing rates due to
the electron-electron and electron-phonon scattering. The
curves are the sums of the ones given in Figures 2 and 3.
We observe that the ratio Γ3 / Γ2 is about 3 for the states
below the Fermi level which are the ones relevant for op-
tical transitions. This is the border region to give a coher-
ent transparency. The situation is less favorable than in
atomic cases, where the lifetimes of level 2 is many orders
of magnitude larger than that of level 3, because is mostly
due to spontaneous emission. In the example of Sadeghi
et al. [5] a ratio of about 1000 was assumed and a very
neat EIT was obtained.
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Fig. 4. Case of a single control beam (Ω2 ≈ ω32, α = 0). To-
tal scattering rates Γi(k) = Γ p

i (k)+Γ e
i (k). The dotted and the

dashed lines refer to bands 3 and 2 respectively. The continuous
line to band 1. The curves are the sums of those given in Fig-
ures 2 and 3. We notice that for small k vectors Γ3(k) > Γ2(k),
and also Γ1(k) is relevant due to intrasubband scattering.

With the computed values appropriate to our QW we
obtain the absorption spectra shown in Figure 5 for differ-
ent intensities of the control beam. With a relatively weak
control beam (β ≈ 0.75 ps−1, corresponding to about
0.1 MW cm−2) the deep is totally inside the linewidth,
so that the transparency is due to the interference in the
transition probability amplitudes at different orders. We
notice that the coherence of the EIT effects is demon-
strated by the fact that the lineshape cannot be fitted
with the sum of two absorption peaks, but the trans-
parency is deeper. It is to be observed that a detuning
of the control beam moves the absorption deep accord-
ingly (ωp − Ω2 = ω21), as expected for coherent EIT.
With a larger intensity of the control beam the trans-
parency increases, but its width is larger than the absorp-
tion width. This corresponds to a dynamic Stark effect,
which splits the levels of the uppermost band. We also
notice that the sum rules for the nonlinear susceptibility
must be obeyed [31].

We next consider the case of two control beams with
frequencies Ω1 = ω31 and Ω2 = ω32, as suggested for
atomic systems by Narducci et al. [17]. The main differ-
ence from the case of one control beam is that in this
case the steady state population of the bands is strongly
modified, and also the dephasing rates are modified. For
the purpose of exemplification we present in Figure 6
the final population of the three subbands for the case
α = β = 0.1 ps−1. We can observe that the final solution
required by consistency between dephasing and popula-
tion of the states, gives an appreciable redistribution of the
electron population on the different subbands, even with a
relatively small intensity of the control beams, the highest
subband remaining essentially depopulated due to coher-
ence effects. The effect of the population redistribution
on the electron-phonon and electron-electron dephasing is
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Fig. 5. Imaginary part of the susceptibility with a single res-
onant control beam (Ω2 = ω32, α = 0) and different coupling
field intensities: β = 0 (solid line), 0.75 (symmetric dotted
line), and 2 (dashed line) ps−1. The asymmetric dotted line is
obtained for β = 0.75 ps−1 and a detuning of the coupling field
Ω2 − ω32 = 0.5 meV.
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Fig. 6. Electron density distribution in the 1st (solid line), 2nd
(dashed line) and 3rd (dotted line) subband for two resonant
coupling fields (Ω1 = ω31, Ω2 = ω32) with α = 0.1 ps−1 and
β = 0.1 ps−1.

shown in Figure 7, where we give the total dephasing rates.
We observe that due to the increased electron-electron
scattering rates, Γ3 ≈ Γ2, so that the narrow transparency
is not observable. However we obtain a large enhanced
transparency, which is shown in Figure 8. We notice that
the computed absorption of the probe beam shows a con-
siderable decrease which follows from the population re-
distribution. The EIT has a quite different lineshape from
that observed in the case of one driving field of fre-
quency ω32, the absorption being greatly reduced over the
entire spectrum. This is due to the broadening of the probe
transparency because of electron-electron scattering.



L. Silvestri et al.: Electromagnetically induced transparency in quantum wells 99

0 1 2 3 4 5

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Γ i
e
+

Γ i
p
(p
s
-1
)

k / k
F

Fig. 7. Total scattering rates Γi(k) = Γ p
i (k) + Γ e

i (k) for two
resonant coupling fields with the intensities given in Figure 6.
The dotted and the dashed lines refer to bands 3 and 2 respec-
tively. The continuous line to band 1. Notice how at small k
values Γ3(k) ≈ Γ2(k).
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Fig. 8. Imaginary part of the susceptibility for different values
of the resonant coupling field intensities (Ω1 = ω31, Ω2 = ω32):
α = β = 0 (solid line), 0.1 (dashed line) and 0.3 ps−1 (dotted
line). The dash dotted line refers to the case of a single coupling
field resonant between subband 1 and 3: Ω1 = ω31, β = 0 and
α = 0.1 ps−1.

We can observe that the quantity
∫
ωImχ(ω)dω is not

conserved in this case because we have limited our calcu-
lation to a small portion of the spectrum. When the popu-
lation is changed, transitions to other subbands should be
considered from all our subbands to satisfy the sum rules.

The effects of the coherence between the control beams
can be seen by comparing the absorption obtained with a
driving field of frequency ω31 (α = 0.1 ps−1, dash-dotted
line of Fig. 6) and the absorption obtained with both res-
onant driving fields (α = β = 0.1 ps−1, dashed line of
Fig. 8). When only a single control beam at frequency
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Fig. 9. Electron density distribution in the 1st (solid line), 2nd
(dashed line) and 3rd (dotted line) subband for one resonant
coupling field: Ω1 = ω31, β = 0 and α = 0.1 ps−1.

Ω1 = ω31 is applied we obtain an even larger decrease in
absorption due to saturation because the third subband
is partly populated. We also point out that, due to scat-
tering with phonons, a great part of the electrons end up
in the intermediate subband, as shown in Figure 9. When
we apply two control beams, they interfere and are very
effective in driving the electrons to the intermediate sub-
band, so that the highest one remains practically empty,
as illustrated in Figure 6. This coherence effect produces a
smaller transparency than that obtained with one control
beam of frequency ω31, because in the latter case the third
subband is partly populated.

6 Conclusions and discussion

We have shown that properly chosen double asymmetric
quantum wells can sustain the phenomenon of EIT, when
driving fields resonant with intersubband transitions are
applied.

We have considered a configuration with the intermedi-
ate subband closer in energy to the highest subband than
to the lowest one. The dephasing rates due to electron-
electron and electron-phonon interaction are computed,
taking into account the occupation of the band states. A
system of coupled equations for electron density matrices
are derived, including all the dephasing rates. From them
the absorption of a probe beam nearly resonant between
the lowest and the highest subband can be computed, for
any given substance and well widths, as a function of the
intensity of the driving fields.

Numerical calculations on GaAs/Al0.3Ga0.7As QW are
carried out with one and with two driving fields. In the
former case the population of the subbands is practically
unchanged and we find a well defined EIT for appropriate
intensities of the control beam.
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In the case of two driving fields some electrons occupy
the higher subbands producing a kind of population trap-
ping. This redistribution of the electrons has two effects
that combine to give a greatly enhanced transparency.
First, the presence of electrons in the higher subbands
reduces the total absorption in the ~ω31 region. In addi-
tion the dephasing rates are greatly increased because of
the electron-electron scattering in all the bands, and this
modifies the lineshape of the absorption: the transparency
hole is modified into a much broader more intense trans-
parency. As a consequence the EIT observed is qualita-
tively different from the narrow usual EIT.

The present results confirm the possibility of obtaining
EIT in solids, using asymmetric double quantum wells.
Though the transparency is not as complete as in high
density atomic systems, the advantage of obtaining EIT
and the consequent hyperanomalous dispersion in solid
materials can be of great relevance in related phenom-
ena (orders of magnitude decrease in the group veloc-
ity, Fizeau drag anomalies, Cerenkov cone modification,
superluminar propagation). The enhanced transparency
with two driving fields and the associate emptiness of the
highest subband can also be of interest in practical appli-
cations.
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Appendix A: Absorption spectra

We consider a linear response of the system at a probe
field (57) at frequency ωp, near the transition fre-
quency ω31. In the following we compute the rate of
absorption of energy from the perturbing field. The ab-
sorption is proportional to the imaginary part of the lin-
ear susceptibility. To determine the rate of absorption,
we must find the change produced by an perturbation
in the equilibrium density operator. In the lowest order
this change may be expressed in terms of the interaction
Hamiltonian H ′(t) associated with the perturbation and
the unperturbed equilibrium density operator ρ as

d
dt
ρ =

i
~

[H, ρ],

∆ ρ(t) =
i
~

∫ t

−∞
dt′ [H ′(t′), ρ]. (A.1)

The operator ρ in the above equation is considered as a
time independent quantity. The rate at which the pertur-
bation does work on the system is proportional to the

imaginary part of the susceptibility [28], and is of the
form [29]

W ′(t) = Tr
[
∆ρ(t)

∂H ′(t)
∂t

]
= Tr

[(
i
~

∫ t

−∞
dt′ [H ′(t′), ρ]

)
∂H ′(t)
∂t

]
=

1
i~

∫ t

−∞
dt′Tr

{
ρ

[
∂H ′(t)
∂t

,H ′(t′)
]}

, (A.2)

where we used the property of the invariance of the trace
operation under a cyclic permutation.

We consider the perturbing Hamiltonian (59) and per-
form the time derivative to obtain

∂H ′

∂t
=
∑
k

iωp
2
[
M31

0 E0 e−iωptĉ31
k −M13

0 E∗0 eiωptĉ13
k

]
,

(A.3)

with

ĉ13
k = ĉ1†k ĉ3k, ĉ31

k = ĉ3†k ĉ1k. (A.4)

Next we compute the commutator

[
∂H ′(t)
∂t

,H ′(t′)
]

=

∑
k,k′

{
− iωp

2
[
M31

0 E0 e−iωptĉ31
k (t)−M13

0 E∗0 eiωptĉ13
k (t)

]
×
[
M31

0 E0 e−iωpt
′
ĉ31
k′ (t

′) +M13
0 E∗0 eiωpt

′
ĉ13
k′ (t
′)
]

+iωp
[
M31

0 E0 e−iωpt
′
ĉ31
k′ (t

′) +M13
0 E∗0 eiωpt

′
ĉ13
k′ (t

′)
]

×
[
M31

0 E0 e−iωptĉ31
k (t)−M13

0 E∗0 eiωptĉ13
k (t)

]}

=
∑
k

iωp

∣∣E0M31
0

∣∣2
2

[
−eiωp(t′−t)ĉ31

k (t)ĉ13
k (t′)

+eiωp(t−t′)ĉ13
k (t) ĉ31

k (t′)− eiωp(t−t′)ĉ31
k (t′)ĉ13

k (t)

+eiωp(t′−t)ĉ13
k (t′)ĉ31

k (t)
]
, (A.5)

and insert this expression into (A.2), to obtain

W ′ =
∑
k

ωp
~
∣∣E0M31

0

∣∣2∫ t

−∞
dt′
[
−eiωp(t′−t)

〈
ĉ31
k (t)ĉ13

k (t′)
〉

+eiωp(t−t′) 〈ĉ13
k (t) ĉ31

k (t′)
〉
− eiωp(t−t′) 〈ĉ31

k (t′)ĉ13
k (t)

〉
+eiωp(t′−t) 〈ĉ13

k (t′)ĉ31
k (t)

〉 ]
. (A.6)
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Performing the integrations we obtain

−
∫ t

−∞
dt′eiωp(t′−t) 〈ĉ31

k (t) ĉ13
k (t′)

〉
= −

∫ ∞
0

dτ e−iωpτgd(τ),∫ t

−∞
dt′ eiωp(t−t′) 〈ĉ13

k (t) ĉ31
k (t′)

〉
=
∫ 0

−∞
dτ e−iωpτ ge(τ),

−
∫ t

∞
dt′eiωp(t−t′) 〈ĉ31

k (t′)ĉ13
k (t)

〉
= −

∫ 0

−∞
dτe−iωpτgd(τ),∫ t

−∞
dt′eiωp(t′−t) 〈ĉ13

k (t′)ĉ31
k (t)

〉
=
∫ ∞

0

dτe−iωpτge(τ),

(A.7)

where we used the correlation functions

ge(τ) =
〈
ĉ13
k (t′)ĉ31

k (τ + t′)
〉
,

gd(τ) =
〈
ĉ31
k (τ + t′)ĉ13

k (t′)
〉
· (A.8)

Putting all the above integrals in the expression (A.6) we
obtain for this model system the absorption to be propor-
tional to the following Fourier transform:

W ′ =
∑
k

ωp

∣∣E0M13
0

∣∣2
2~

∫ ∞
−∞

dτ e−iωpτ (ge(τ) − gd(τ)) .

(A.9)

Including the factor |M13
0 |2 into the correlation functions

and making use of the expressions (60) we arrive at

W ′ = ωp
|E0|2

2~
∑
k

∫ ∞
−∞

dτ e−iωpτ
〈[
p̂−k (t′), p̂+

k (τ + t′)
]〉
,

(A.10)

which can be written in terms of the Laplace transform as

W ′ =
ωp
~
|E0|2

∑
k

Re {L[G(τ); s = iωp]} , (A.11)

with (63)

G(τ) =
∑
k

Gk(τ, t′) =
∑
k

〈[
p̂−k (t′), p̂+

k (τ + t′)
]〉
·

(A.12)

The imaginary part of the susceptibility is related to the
dissipated energy and can be written in the form (61).
To evaluate the commutator we make use of the quantum
regression theorem [5,30], which states that if we know the
mean value of an operator S(t) as a linear combination of
the mean values of a set of operators Sµ(t′) with t′ < t,

〈S(t)〉 =
∑
µ

[Oµ(t, t′) 〈Sµ(t′)〉+ λµ] , (A.13)

where t > t′, then we can calculate the mean value of the
product S(t)N(t′) as

〈S(t)N(t′)〉 =
∑
µ

[Oµ(t, t′) 〈Sµ(t′)N(t′)〉+ λµ 〈N(t′)〉] ·

(A.14)

Performing a Laplace transform with respect to t, we ob-
tain for expressions (A.13) and (A.14)

〈L[S(t); z]〉 =
∑
µ

[L[Oµ(t, t′); z] 〈Sµ(t′)〉+ λµ] , (A.15)

〈L[S(t); z]N(t′)〉 =
∑
µ

[L[Oµ(t, t′); z] 〈Sµ(t′)N(t′)〉

+λµ 〈N(t′)〉] . (A.16)

In order to use this theorem to evaluate the Laplace
transforms of 〈p̂−k (t′)p̂+

k (τ + t′)〉 and 〈p̂+
k (τ + t′)p̂−k (t′)〉 we

first need to identify the operator S(t) and a set of basis
operators mean values {〈Sµ〉}. We choose S(t) = p̂+

k (t)
and the mean values c̃ijk which can be obtained from
equation (55). Then we identify Oµ, which obtains di-
rectly from the solutions of equations (55), expressed in
the form (65). This equations can be solved by means of
the Laplace transform, yielding in the steady state limit
(t→∞)

〈L[p̂+
k (t); s = iωp]〉 = M31

0 L[c31
k ; s = iωp]

= M31
0 L[c̃31

k ; s = iωp − iΩ1]

= M31
0

∑
k′,µ

(
R31,µ
k,k′ (z)c̃µk′(t

′) +
1
z
R31,µ
k,k′ (z)Kµ

k′

)
,

(A.17)

where the tensor Rij,lmk,k′ (z) is defined by equation (66) and
z = iωp − iΩ1. We can now use the above theorem (A.15–
A.16) and put

p̂−k (t′) ≡ N(t′),

L[Oµ,k′(t, t′); z] = M31
0 R31,µ

k,k′ (z),

λµ,k′ =
M31

0

z
R31,µ
k,k′ (z)Kµ

k′ , (A.18)

to obtain, in the steady state limit t, t′ →∞,

L
[〈
p̂+
k (τ + t′)p̂−k (t′)

〉
; s = iωp

]
=
∣∣M31

0

∣∣2(R31,31
k,k (z)c̃33

k

+R31,11
k,k (z)c̃13

k +R31,21
k,k (z)c̃23

k +
∑
k′,µ

λµ,k′ c̃
13
k

)
. (A.19)

Using the same procedure to evaluate L[〈p̂−k (t′)p̂+
k (τ +

t′)〉; s = iωp], we obtain

L[
〈
p̂−k (t′)p̂+

k (τ + t′)− p̂+
k (τ + t′)p̂−k (t′)

〉
; s = iωp] =

−
∣∣M13

0

∣∣2 [R31,31
k,k (z)

(
c̃33
k − c̃11

k

)
+
(
R31,11
k,k (z)−R31,33

k,k (z)
)
c̃13
k

+R31,21
k,k (z)c̃23

k −R
31,32
k,k (z)c̃12

k

]
, (A.20)

with z = iωp− iΩ1, which can be inserted in equation (61)
to obtain the final expression (64).
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